Günümüz dünyasında Henri Poincaré, toplumun farklı kesimlerinden çok sayıda insan için büyük önem taşıyan ve ilgi duyulan bir konu haline geldi. Kültür, çevre, siyaset veya ekonomi üzerindeki etkisi nedeniyle Henri Poincaré akademisyenlerin, profesyonellerin ve kamuoyunun dikkatini çekmeyi başardı. Bu yazıda Henri Poincaré ile ilgili farklı yönleri, önemini ve günlük yaşamın çeşitli yönleri üzerindeki etkisini inceleyeceğiz. Kökeninden gelecekteki olası sonuçlarına kadar, Henri Poincaré'in günümüz dünyasındaki önemine derinlemesine bakacağız.
Jules Henri Poincare (Fransızca telaffuz: (dinle);[4][5] 29 Nisan 1854 – 17 Temmuz 1912) Fransızmatematikçi, teorik fizikçi, mühendis ve bilim felsefecisiydi. Yaşamı boyunca var olduğu şekliyle disiplinin tüm alanlarında mükemmel olduğundan, genellikle bir bilge ve matematikte "Son Evrenselci (The Last Universalist)" olarak tanımlanır.[6]
Poincaré, farklı dönüşümler altında fizik yasalarının değişmezliğine dikkat etmenin önemini açıkça ortaya koydu ve Lorentz dönüşümlerini modern simetrik formlarında sunan ilk kişi oldu. Poincare kalan göreli hız dönüşümlerini keşfetti ve bunları 1905'te Hendrik Lorentz'e yazdığı bir mektupta kaydetti. Böylece, özel görelilik teorisinin formülasyonunda önemli bir adım olan tüm Maxwell denklemlerinin mükemmel değişmezliğini elde etti. 1905 yılında Poincaré ilk olarak bir cisimden yayılan ve Lorentz dönüşümlerinin gerektirdiği şekilde ışık hızında yayılan kütleçekim dalgalarını (ondes gravifiques) önerdi.
Fizik ve matematikte kullanılan Poincaré grubuna onun adı verildi.
Poincaré, 29 Nisan 1854'te Nancy, Meurthe-et-Moselle'deki Cité Ducale semtinde etkili bir Fransız ailesinde doğdu.[8] Babası Léon Poincaré (1828-1892) Nancy Üniversitesi'nde tıp profesörüydü.[9] Küçük kız kardeşi Aline, manevi filozof Émile Boutroux ile evlendi. Henri'nin ailesinin bir diğer önemli üyesi, 1913'ten 1920'ye kadar Fransa Cumhurbaşkanı olarak görev yapacak olan Académie française'nin bir üyesi olan kuzeni Raymond Poincaré idi.[10]
Eğitimi
Nancy şehrinde Grande Rue'de 117 numaralı evde Henri Poincaré'nin doğum yeri üzerine plaket
Çocukluğunda bir süre difteri hastalığına yakalandı ve annesi Eugenie Launois'den (1830-1897) özel eğitim aldı.
1862'de Henri, Nancy'deki Lycée'ye girdi.(şimdi onun onuruna yine Nancy'de olan Henri Poincaré Üniversitesi ile birlikte, Lycée Henri-Poincaré [fr] olarak yeniden adlandırıldı.). Lisede on bir yıl geçirdi ve bu süre zarfında okuduğu her konuda en iyi öğrencilerden biri olduğunu kanıtladı. Yazılı kompozisyonda mükemmeldi. Matematik öğretmeni onu bir "matematik canavarı" olarak tanımladı ve Fransa'daki tüm Liselerin en iyi öğrencileri arasında bir yarışma olan concours général'de birincilik ödülleri kazandı. En zayıf dersleri, "en iyi ihtimalle ortalama" olarak tanımlandığı müzik ve beden eğitimiydi.[11] Ancak, görme zayıflığı ve dalgınlığa eğilim bu zorlukları açıklayabilir.[12] 1871'de Lycée'den hem edebiyat hem de bilimde bir bakalorya ile mezun oldu.
Poincaré, 1873'te École Polytechnique'e en iyi eleme derecesi ile girdi ve 1875'te mezun oldu. Orada Charles Hermite'in öğrencisi olarak matematik okudu, sivrilmeye devam etti ve 1874'te ilk makalesini (Démonstration nouvelle des propriétés de l'indicatrice d'une Surface) yayınladı. Kasım 1875'ten Haziran 1878'e kadar École des Mines'de okudu, maden mühendisliği müfredatına ek olarak matematik çalışmasına devam etti ve Mart 1879'da sıradan maden mühendisi derecesini aldı.[13]
Ecole des Mines mezunu olarak, kuzeydoğu Fransa'daki Vesoul bölgesi için müfettiş olarak Corps des Mines'e katıldı. Ağustos 1879'da Magny'de 18 madencinin öldüğü bir maden felaketi mahallindeydi. Kazayla ilgili resmi soruşturmayı karakteristik olarak kapsamlı ve insani bir şekilde yürütmüştür.
Aynı zamanda, Poincare, Charles Hermite'in gözetiminde matematik alanında Bilim Doktorasına hazırlanıyordu. Doktora tezi, Sur les propriétés des fonctions définies par les équations aux différences partiellesdiferansiyel denklemler alanındaydı. Poincare, bu denklemlerin özelliklerini incelemek için yeni bir yol tasarladı. Sadece bu tür denklemlerin integralini belirleme sorunuyla karşı karşıya kalmadı, aynı zamanda genel geometrik özelliklerini inceleyen ilk kişiydi. Güneş Sistemi içinde serbest hareket halindeki birden fazla cismin davranışını modellemek için kullanılabileceğini fark etti. Poincare, 1879'da Paris Üniversitesi'nden mezun oldu.
İlk bilimsel başarıları
Derecesini aldıktan sonra, Poincare, Normandiya'daki Caen Üniversitesi'nde (Aralık 1879'da) matematik alanında genç öğretim görevlisi olarak ders vermeye başladı. Aynı zamanda, bir sınıf otomorfik fonksiyonların incelenmesine ilişkin ilk büyük makalesini yayınladı.
Orada, Caen'de müstakbel eşi Louise Poulain d'Andecy ile tanıştı ve 20 Nisan 1881'de evlendiler. Dört çocukları oldu: Jeanne (1887 doğumlu), Yvonne (1889 doğumlu), Henriette (1891 doğumlu) ve Léon (1893 doğumlu).
Poincaré hemen Avrupa'nın en büyük matematikçileri arasına yerini aldı ve birçok önde gelen matematikçinin dikkatini çekti. 1881'de Poincaré, Paris Üniversitesi Fen Fakültesi'nde öğretim görevlisi pozisyonuna davet edildi; daveti kabul etti. 1883-1897 yılları arasında École Polytechnique'de matematiksel analiz dersleri verdi.
1881-1882'de Poincare yeni bir matematik dalı yarattı: diferansiyel denklemlerin nitel teorisi. Denklemi çözmek zorunda kalmadan bir çözüm ailesinin davranışı hakkında en önemli bilgiyi elde etmenin nasıl mümkün olduğunu gösterdi (çünkü bu her zaman mümkün olmayabilir). Bu yaklaşımı gök mekaniği ve matematiksel fizikteki problemlere başarıyla kullandı.
Kariyeri
Madencilik kariyerini asla tamamen matematiğe bırakmadı. 1881'den 1885'e kadar Kuzey demir yolu gelişiminden sorumlu bir mühendis olarak Kamu Hizmetleri Bakanlığı'nda çalıştı. Sonunda 1893'te Corps de Mines'in baş mühendisi ve 1910'da genel müfettiş oldu.
1881'den başlayarak ve kariyerinin geri kalanında Paris Üniversitesi'nde (Sorbonne) ders verdi. Başlangıçta maître de conférences d'analyse (analiz doçenti) olarak atandı.[14] Sonunda, Fiziksel ve Deneysel Mekanik, Matematiksel Fizik ve Olasılık Teorisi,[15] ve Gök Mekaniği ve Astronomi kürsülerinde bulundu.
1893'te Poincaré, onu dünyanın her yerindeki zaman senkronizasyonu ile meşgul eden Fransız Bureau des Longitudes'a katıldı. 1897'de Poincare, dairesel ölçünün ve dolayısıyla zaman ve boylamın ondalıklaştırılması için başarısız bir öneriyi destekledi.[16] Onu uluslararası zaman dilimleri oluşturma ve göreceli hareket halindeki cisimler arasındaki zamanın senkronizasyonu sorununu düşünmeye iten bu yazıydı. (Aşağıdaki görelilik üzerine çalışmaya bakın.)
1899'da ve yine daha başarılı bir şekilde 1904'te Alfred Dreyfus'un davalarına müdahil oldu. Fransız ordusunda vatana ihanetle suçlanan bir Yahudi subayı olan Dreyfus'a karşı getirilen bazı delillerin sahte bilimsel iddialarını eleştirdi.
1912'de Poincaré prostat sorunu nedeniyle ameliyat oldu ve ardından 17 Temmuz 1912'de Paris'te bir emboliden öldüğünde 58 yaşındaydı.[19] Paris'teki Montparnasse Mezarlığı'ndaki Poincaré aile mezarına gömüldü.
Fransa'nın eski Eğitim Bakanı Claude Allègre, 2004'te Poincaré'nin en yüksek onurlu Fransız vatandaşlarına ayrılmış olan Paris'teki Panthéon'da yeniden gömülmesini önerdi.[20]
Yanlışların Olağan Yasası (Normal Law of Errors) "herkesin inancı" üzerine Poincaré (bu "yasanın" açıklaması için normal dağılıma bakın)
Kuantum mekaniğini destekleyen yeni bir matematiksel argüman sağlayan etkili bir makale yayınladı.[21][22]
Üç cisim problemi
Güneş Sisteminde yörüngede dönen ikiden fazla cismin hareketine genel bir çözüm bulma problemi, Newton'un zamanından beri matematikçilerin gözünden kaçmıştı. Bu, başlangıçta üç cisim problemi ve daha sonra n’nin ikiden fazla yörüngedeki cisimlerin herhangi bir sayısı olduğu n-cisim problemi olarak biliniyordu. n-cisim çözümü, 19. yüzyılın sonunda çok önemli ve zorlu kabul edildi. Nitekim 1887'de 60. yaş günü şerefine Gösta Mittag-Leffler'in tavsiyesiyle İsveç Kralı II. Oscar, soruna çözüm bulabilen herkese bir ödül verdi.
“
Newton yasasına göre her birini çeken keyfi olarak çok sayıda kütle noktasından oluşan bir sistem verildiğinde, hiçbir iki noktanın asla çarpışmadığı varsayımı altında, zamanın bilinen bir fonksiyonu olan bir değişkende her noktanın koordinatlarının bir dizi olarak bir temsilini bulmaya çalışın. ve tüm değerleri için seri düzgün yakınsaktır.
„
Problemin çözülememesi durumunda, klasik mekaniğe herhangi bir başka önemli katkının ödüle değer olduğu düşünülürdü. Asıl problem çözmemiş olsa da ödül sonunda Poincaré'ye verildi. Hakemlerden biri, seçkin Karl Weierstrass, "Bu çalışmanın, önerilen problemin tam çözümünü sağladığı düşünülemez, ancak yine de, yayınlanması göksel mekanik tarihte yeni bir çağı başlatacak kadar önemlidir." (Katkısının ilk versiyonu ciddi bir hata bile içeriyordu; ayrıntılar için Diacu'nun makalesine[23] ve Barrow-Green'in[24] kitabına bakın). Sonunda basılan versiyon,[25]kaos teorisine yol açan birçok önemli fikri içeriyordu. Başlangıçta belirtildiği gibi problem nihayet 1912'de Karl F. Sundman tarafından n = 3 için çözüldü ve 1990'larda Qiudong Wang tarafından n > 3 cisim durumuna genelleştirildi.
Poincaré'nin Bureau des Longitudes'deki uluslararası zaman dilimleri oluşturma konusundaki çalışması, onu, mutlak uzaya (veya "ışıklı eter") göre farklı hızlarda hareket eden Dünya'da hareketsiz olan saatlerin nasıl senkronize edilebileceğini düşünmeye yöneltti. Aynı zamanda, Hollandalı teorisyen Hendrik Lorentz, Maxwell'in teorisini, yüklü parçacıkların ("elektronlar" veya "iyonlar") hareketi ve bunların radyasyonla etkileşimi teorisine dönüştürüyordu. 1895'te Lorentz, "yerel saat" adı verilen (fiziksel yorumu olmayan) yardımcı bir niceliği tanıtmıştı. [26] ve etere göre hareketi algılamak için optik ve elektrik deneylerinin başarısızlığını açıklamak amacıyla uzunluk daralması hipotezini tanıttı (bkz. Michelson-Morley deneyi).[27] Poincaré, Lorentz'in teorisinin sürekli bir yorumcusu (ve bazen dostça bir eleştirmeni) idi. Poincare, bir filozof olarak "daha derin anlam (deeper meaning)" ile ilgilendi. Böylece Lorentz'in teorisini yorumladı ve bunu yaparken şimdi özel görelilik ile ilişkilendirilen pek çok içgörü buldu. Poincare, The Measure of Time'da (1898) şöyle demiştir: "Bütün bu olumlamaların kendi başlarına hiçbir anlamı olmadığını anlamak için biraz düşünmek yeterlidir. Sadece bir geleneğin sonucu olarak bir tane alabilirler." Ayrıca bilim insanlarının, fiziksel teorilere en basit biçimi vermek için bir varsayım olarak ışık hızının sabitliğini belirlemeleri gerektiğini savundu.[28] Bu varsayımlara dayanarak 1900'de Lorentz'in yerel zamanın "harika icadı"nı tartıştı ve hareket halindeki saatlerin, hareketli bir çerçevede her iki yönde aynı hızda hareket ettiği varsayılan ışık sinyallerinin değiş tokuşuyla senkronize edildiğinde ortaya çıktığını belirtti.[29]
Poincaré küresinin bir temsili, küresel koordinatlar biçiminde polarize ışık için Stokes parametrelerinin parametreleştirilmesi. Bunun Poincaré homoloji küresi ile aynı olmadığına dikkat edin.
1892'de Poincare, polarizasyon da dahil olmak üzere bir ışığınmatematiksel teorisini geliştirdi. Polarize durumları temsil eden bir küre üzerinde hareket eden polarizörlerin ve yavaşlatıcıların eylemi hakkındaki vizyonuna Poincaré küresi denir.[32] Poincaré küresinin, Lorentz dönüşümlerinin ve hız eklemelerinin geometrik bir temsili olarak kullanılabileceği, temel bir Lorentz simetrisine sahip olduğu gösterildi.[33]
1900'de[29][34] iki makalede "göreceli hareket ilkesini" tartıştı ve 1904'te ona görelilik ilkesi adını verdi; buna göre hiçbir fiziksel deney, düzgün bir hareket durumu ile bir dinlenme durumu arasında ayrım yapamaz.[35] 1905'te Poincare, Lorentz'e, Lorentz'in 1904 tarihli ve Poincaré'nin "son derece önemli bir makale" olarak tanımladığı makalesi hakkında yazdı. Bu mektupta Lorentz'in dönüşümünü Maxwell'in yük dolu uzay için olan denklemlerinden birine uyguladığında yaptığı bir hataya işaret etti ve ayrıca Lorentz tarafından verilen zaman genleşmesi faktörünü sorguladı.[36] Lorentz'e yazdığı ikinci bir mektupta Poincaré, Lorentz'in zaman genişletme faktörünün gerçekten de neden doğru olduğunu kendi nedeniyle açıkladı - Lorentz dönüşümünü bir grup haline getirmek gerekliydi - ve şimdi göreli hız-toplama yasası olarak bilinen şeyi verdi.[37] Poincaré daha sonra 5 Haziran 1905'te Paris'teki Bilimler Akademisi toplantısında bu konuların ele alındığı bir bildiri sundu. Bunun yayınlanan versiyonunda şunları yazdı:[38]
“
Lorentz tarafından ortaya konan temel nokta, elektromanyetik alan denklemlerinin şu biçimin belirli bir dönüşümüyle (ki buna Lorentz adını vereceğim) değişmediğidir:
„
ve dönüşümlerin bir grup oluşturması için keyfi fonksiyonunun tüm (Lorentz 'i farklı bir argümanla ayarlamıştı) değerleri için tekil olması gerektiğini gösterdi. 1906'da yayınlanan makalenin genişletilmiş bir versiyonunda Poincare, kombinasyonunun değişmez olduğuna işaret etti. Bir Lorentz dönüşümünün 'i dördüncü sanal koordinat olarak tanıtarak yalnızca dört boyutlu uzayda orijin etrafında bir dönüşüm olduğunu kaydetti ve dört vektörün erken bir biçimini kullandı.[39] Poincaré, 1907'de yeni mekaniğinin dört boyutlu yeniden formüle edilmesine ilgi eksikliğini dile getirdi, çünkü onun görüşüne göre, fiziğin dört boyutlu geometri diline çevrilmesi, sınırlı fayda için çok fazla çaba gerektirecekti.[40] Bu düşüncenin sonuçlarını 1907'de çözen Hermann Minkowski oldu.[kaynak belirtilmeli]
Kütle-enerji ilişkisi
Daha önce keşfeden diğerleri gibi, Poincaré (1900) kütle ve elektromanyetik enerji arasında bir ilişki keşfetti. Etki/tepki ilkesi ile Lorentz esir kuramı arasındaki çatışmayı incelerken, elektromanyetik alanlar işe karıştığınfa ağırlık merkezinin hala düzgün bir hızla devinip devinmediğini belirlemeye çalıştı.[29] Etki/tepki ilkesinin yalnızca madde için geçerli olmadığını, elektromanyetik alanın kendi momentumuna sahip olduğunu fark etti. Poincaré, bir elektromanyetik dalganın elektromanyetik alan enerjisinin, kütle yoğunluğu E/c2 olan imgesel bir sıvı ("fluide fictif" ,"kurgusal akışkan") gibi davrandığı sonucuna varmıştır. Eğer kütle çerçevesinin merkezi hem maddenin kütlesi hem de kurgusal akışkanın kütlesi tarafından tanımlanıyorsa ve kurgusal akışkan yok edilemezse -ne yaratılır ne de yok edilir- o zaman kütle merkezi çerçevesinin devinimi tekdüze (üniform) kalır. Ancak elektromanyetik enerji, diğer enerji biçimlerine dönüştürülebilir. Böylece Poincaré, uzayın her noktasında elektromanyetik enerjinin dönüştürülebildiği ve aynı zamanda enerjiyle orantılı bir kütle taşıyan elektrik enerjisi olmayan bir akışkanın var olduğunu varsaymıştır. Bu biçimde kütle merkezinin devinimi düzgün kalır. Poincaré, bu varsayımlara çok şaşırmamak gerektiğini çünkü bunların yalnızca matematiksel kurgular olduğunu söyledi.
Bununla birlikte, Poincaré'nin kararı, çerçeveleri değiştirirken bir çelişkiye yol açtı: Bir Hertz osilatörü belirli bir yönde ışıma yapıyorsa, kurgusal akışkanın eylemsizliğinden dolayı bir geri tepmeyle karşılacaktır. Poincaré, devinimli kaynağın çerçevesine bir Lorentz yükseltmesi(v/c dereceye) gerçekleştirdi. Enerji korunumunun her iki çerçevede de geçerli olduğunu, ancak momentumun korunumu yasasının bozulduğunu kaydetti. Bu, onun nefret ettiği bir kavram olan sürekli devinim izin verecekti. Doğa yasaları, referans çerçevelerinde farklı olmak zorunda kalacaktı ve görelilik ilkesi geçerli olmayacaktı. Bu nedenle, bu durumda da esirde başka bir dengeleyici mekanizmanın olması gerektiğini savundu.
Poincare, St. Louis dersinde (1904) bu konuya geri döndü.[35] Bu kez (ve daha sonra 1908'de)[41] ve yukarıda bahsedilen sorunları gidermek için esir çözümünü eleştirdi:
“
Aygıt sanki bir top ve yansıtılan enerji bir topmuş gibi geri tepecek ve bu, mevcut mermimizin kütlesi olmadığı için Newton ilkesiyle çelişiyor; madde değil, enerjidir. Osilatörü alıcıdan ayıran ve bozukluğun birinden diğerine geçerken geçmek zorunda olduğu uzayın boş olmadığını, sadece esirle değil, havayla, hatta bir miktar ince, ancak ölçülebilir akışkan ile gezegenler arası uzay; Bu maddenin, enerji kendisine ulaştığı anda alıcının yaptığı gibi şoku aldığını ve rahatsızlık onu terk ettiğinde geri teptiğini mi? Bu, Newton'un ilkesini kurtarırdı, ama bu doğru değil. Yayılması sırasında enerji her zaman bir maddi alt tabakaya bağlı kalsaydı, bu madde ışığı da beraberinde taşırdı ve Fizeau, en azından hava için, böyle bir şeyin olmadığını gösterdi. Michelson ve Morley o zamandan beri bunu doğruladı. Özgün maddenin hareketlerinin eterinkilerle tam olarak dengelendiğini de varsayabiliriz; ama bu bizi bir an önce yapılanlarla aynı düşüncelere götürecektir. İlke, bu şekilde yorumlanırsa, her şeyi açıklayabilir, çünkü görünür hareketler ne olursa olsun, onları telafi etmek için varsayımsal hareketler hayal edebiliriz. Ama herhangi bir şeyi açıklayabiliyorsa, hiçbir şeyi önceden bildirmemize izin vermeyecektir; her şeyi önceden açıkladığı için çeşitli olası hipotezler arasında seçim yapmamıza izin vermeyecektir. Bu nedenle işe yaramaz hale gelir.
„
Ayrıca açıklanamayan diğer iki etkiyi de tartıştı: (1) Lorentz'in değişken kütlesi , Abraham'ın değişken kütle kuramı ve Kaufmann'ın hızlı devinen elektronların kütlesi üzerindeki deneylerinden çıkan kütlenin korunmama durumu ve (2) Marie Curie'nin radyum deneylerinde enerjinin korunmama durumu.
Poincare çelişkisini, esir içinde herhangi bir dengeleme mekanizması kullanmadan çözen,[42]Albert Einstein'ın kütle-enerji denkliği (1905) kavramıydı; ışınım veya ısı olarak enerji kaybeden bir cismin kütlesi m = E/c2 miktarında bir kütle kaybediyordu.[43] Hertz osilatörü yayınım sürecinde kütle kaybeder ve momentum herhangi bir çerçevede korunur. Bununla birlikte, Poincaré'nin Ağırlık Merkezi probleminin çözümü ile ilgili olarak, Einstein, Poincare'nin formülasyonunun ve 1906'dan itibaren kendisininkinin matematiksel olarak eşdeğer olduğunu kaydetti.[44]
Kütleçekim dalgaları
1905'te Poincaré ilk olarak bir nesneden çıkan ve ışık hızında yayılan kütleçekimsel dalgaları (ondes gravifiques) önerdi. Bu konuda aşağıdakileri yazdı:
“
Bu varsayımı daha yakından incelemek ve özellikle kütleçekim yasalarını değiştirmemizi hangi yollarla gerektireceğini sormak önemli hale geldi. Bunu belirlemeye çalıştım; ilk başta kütleçekim yayılımının anlık olmadığını, ışık hızıyla gerçekleştiğini varsaymaya yönlendirildim.[38][45]
„
Poincare ve Einstein
Einstein'ın görelilik üzerine ilk makalesi, Poincaré'nin kısa makalesinden üç ay sonra,[38] ancak Poincaré'nin uzun versiyonundan önce yayınlandı.[39] Einstein, Lorentz dönüşümlerini türetmek için görelilik ilkesine dayandı ve Poincaré'nin (1900) tarif ettiğine benzer bir saat senkronizasyonu prosedürü (Einstein senkronizasyonu) kullandı, ancak Einstein'ın makalesi, hiçbir referans içermemesi bakımından dikkat çekiciydi. Poincare, Einstein'ın özel görelilik üzerine çalışmasını hiçbir zaman kabul etmedi. Ancak Einstein, 3 Mayıs 1919'da Hans Vaihinger'e yazdığı bir mektupta Poincaré'nin bakış açısına dolaylı olarak sempati duyduğunu ifade etti.[46] Einstein, Poincaré'nin ölümünden sonra 1921'de "Geometri und Erfahrung ("Geometri ve Deneyim", "Geometry and Experience)" başlıklı bir konferans metninde, özel görelilik ile bağlantılı olarak değil ancak Öklidyen olmayan geometri ile bağlantılı olarak kabul etti. Ölümünden birkaç yıl önce Einstein, Poincaré'i göreliliğin öncülerinden biri olarak yorumladı ve "Lorentz, kendisinden sonra adlandırılan dönüşümün Maxwell denklemlerinin analizi için gerekli olduğunu zaten kabul etmişti ve Poincare bu öngörüyü daha da derinleştirdi. . .[47]
Poincaré'nin özel göreliliğin geliştirilmesindeki çalışması iyi bilinmektedir,[42] çoğu tarihçi Einstein'ın çalışmasıyla birçok benzerliğe karşın, ikisinin çok ayrı araştırma gündemlerine ve çalışma yorumlarına sahip olduğunu vurgulamaktadır.[48] Poincare, yerel zamanın benzer bir fiziksel yorumunu geliştirdi ve sinyal hızıyla olan bağlantıyı fark etti, ancak Einstein'ın tersine, esir kavramını makalelerinde kullanmayı sürdürdü ve esirde devinimsiz olan saatlerin "gerçek" zamanı gösterdiğini ve devinen saatlerin yerel saati gösterdiğini savundu. Böylece Poincare, görelilik ilkesini klasik fizikteki kavramlarına uygun tutmaya çalışırken, Einstein, uzay ve zamanın göreliliğinin yeni fiziksel kavramlarına dayanan matematiksel olarak eşdeğer bir kinematik geliştirdi.[49][50][51][52][53]
Çoğu tarihçinin görüşü bu olsa da, Poincaré ve Lorentz'in göreliliğin gerçek kaşifleri olduğunu savunan E. T. Whittaker gibi bir azınlık çok daha ileri gider.[54]
Cebir ve sayı teorisi
Poincare, grup teorisini fiziğe tanıttı ve Lorentz dönüşümleri grubunu inceleyen ilk kişi oldu.[55] Ayrık gruplar teorisine ve bunların temsillerine de büyük katkılarda bulundu.
Bir kupanın torusa topolojik dönüşümü
Topoloji
Konu, Felix Klein tarafından "Erlangen Programı"nda (1872) gelişigüzel sürekli dönüşümün geometri değişmezleri, bir tür geometri olarak açıkça tanımlanmıştır. "Topoloji" terimi, daha önce kullanılan "Analiz durumu (Analysis situs)" yerine Johann Benedict Listing tarafından önerildiği gibi tanıtıldı. Bazı önemli kavramlar Enrico Betti ve Bernhard Riemann tarafından tanıtıldı. Ancak bu bilimin temeli, herhangi bir boyuttaki bir alan için Poincare tarafından yaratıldı. Bu konudaki ilk makalesi 1894'te yayınlandı.[56]
Geometri alanındaki araştırması, homotopi ve homolojinin soyut topolojik tanımına yol açtı. Ayrıca ilk olarak Betti sayıları ve temel grup gibi kombinatoryal topolojinin temel kavramlarını ve değişmezlerini tanıttı. Poincare, n-boyutlu çokyüzlülerin (Euler-Poincaré teoremi) kenarlarının, köşelerinin ve yüzlerinin sayısıyla ilgili bir formülü kanıtladı ve sezgisel boyut kavramının ilk kesin formülasyonunu verdi.[57]
Astronomi ve gök mekaniği
Üç cisim probleminde kaotik hareket (bilgisayar simülasyonu).
Poincaré, "Gök Mekaniğinin Yeni Yöntemleri (New Methods of Celestial Mechanics)" (1892-1899) ve "Gök Mekaniği Üzerine Dersler (Lectures on Celestial Mechanics)" (1905-1910) adlı iki klasik monografi yayınladı. Onlarda, araştırmalarının sonuçlarını üç cismin hareketi problemine başarıyla uyguladı ve çözümlerin davranışını (frekans, kararlılık, asimptotik vb.) Küçük parametre yöntemini, sabit noktaları, integral değişmezleri, varyasyon denklemlerini, asimptotik açılımların yakınsamasını tanıttı. Bruns'ın (1887) bir teorisini genelleştiren Poincaré, üç cisim probleminin tümlevlenemez olduğunu gösterdi. Başka bir deyişle, üç cisim probleminin genel çözümü, cisimlerin kesin koordinatları ve hızları aracılığıyla cebirsel ve aşkın fonksiyonlar açısından ifade edilemez. Bu alandaki çalışması, Isaac Newton'dan bu yana gök mekaniğindeki ilk büyük başarıydı.[58]
Bu monograflar, daha sonra matematiksel "kaos teorisi" (özellikle bkz. Poincaré yinelenme teoremi) ve dinamik sistemlerin genel teorisinin temeli haline gelen bir Poincare fikrini içerir. Poincare, yer çekimi ile dönen bir akışkanın denge figürleri için astronomi üzerine önemli eserler yazdı. Çatallanma noktalarının önemli kavramını tanıttı ve halka biçimli ve armut biçimli şekiller de dahil olmak üzere elipsoid olmayanlar gibi denge şekillerinin varlığını ve bunların stabilitesini kanıtladı. Bu keşif için Poincare, Kraliyet Astronomi Derneği'nin Altın Madalyasını aldı (1900).[59]
nın
Diferansiyel denklemler ve matematiksel fizik
Poincaré, diferansiyel denklemler sisteminin tekil noktalarının incelenmesi üzerine doktora tezini savunduktan sonra, "Diferansiyel denklemlerle tanımlanan eğriler üzerine (On curves defined by differential equations)" (1881-1882)[60] başlığı altında bir dizi anı yazdı. Bu makalelerde, "diferansiyel denklemlerin nitel teorisi" adı verilen yeni bir matematik dalı oluşturdu. Poincaré, diferansiyel denklemin bilinen fonksiyonlar cinsinden çözülemese bile, denklemin formundan, çözümlerin özellikleri ve davranışları hakkında çok sayıda bilgi bulunabileceğini gösterdi. Özellikle, Poincaré düzlemdeki integral eğrilerin yörüngelerinin doğasını araştırdı, tekil noktaların (semer, odak, merkez, düğüm) bir sınıflandırmasını verdi, bir limit çevrimi kavramını ve döngü indeksini tanıttı ve bazı özel durumlar dışında limit çevrim sayısı her zaman sonludur. Poincaré ayrıca genel bir integral değişmezler teorisi ve varyasyon denklemlerinin çözümlerini geliştirdi. Sonlu fark denklemleri için yeni bir yön yarattı -çözümlerin asimptotik analizi. Tüm bu başarıları matematiksel fizik ve gök mekaniğinin pratik problemlerini incelemek için uyguladı ve kullanılan yöntemler topolojik çalışmalarının temeliydi.[61]
İntegral eğrilerin tekil noktaları
Semer
Odak
Merkez
Düğüm
Karakteri
1909'da dul eşi tarafından École polytechnique'e sunulan Henri Poincaré'nin (Joseph Carlier tarafından) büstü - Palaiseau'daki l'X'in ana salonunda yer alır (BCX kütüphane koleksiyonları)
Poincaré'nin çalışma alışkanlıkları, çiçekten çiçeğe uçan bir arıya benzetilmiştir. Poincare, zihninin nasıl çalıştığıyla ilgileniyordu; alışkanlıklarını inceledi ve 1908'de Paris'teki Genel Psikoloji Enstitüsü'nde gözlemleri hakkında bir konuşma yaptı. Düşünme tarzını nasıl birkaç keşif yaptığına bağladı.
Matematikçi Darboux, onun un intuitif (bir sezgisel) olduğunu iddia etti ve bunun görsel temsillerle çok sık çalıştığı gerçeğiyle kanıtlandığını savundu. Katı olmayı umursamaz ve mantıktan hoşlanmazdı.[62] (Bu görüşe rağmen, Jacques Hadamard, Poincaré'nin araştırmasının olağanüstü netlik gösterdiğini yazdı[63] ve Poincaré'nin kendisi, mantığın bir fikir icat etmenin değil, fikirleri yapılandırmanın bir yolu olduğuna ve mantığın fikirleri sınırladığına inandığını yazdı.)
Toulouse'un tanımlaması
Poincaré'nin zihinsel organizasyonu sadece Poincaré'nin kendisi için değil, aynı zamanda Paris'teki Yüksek Araştırmalar Okulu'nun Psikoloji Laboratuvarı psikoloğuÉdouard Toulouse için de ilginçti. Toulouse, Henri Poincare (1910) adlı bir kitap yazdı.[64][65] İçinde Poincaré'nin düzenli programını tartıştı:
Her gün aynı saatlerde kısa süreler içinde çalıştı. Günde dört saat, sabah 10:00 ile öğlen arasında, ardından tekrar 17:00'den itibaren akşam 7'ye kadar matematiksel araştırma yaptı. Akşamın ilerleyen saatlerinde dergilerdeki makaleleri okurdu..
Normal çalışma alışkanlığı, bir problemi tamamen kafasında çözmek, ardından tamamlanan problemi kağıda geçirmekti.
Duyduklarını görselleştirme yeteneği özellikle derslere katıldığında faydalı oldu, çünkü görme yeteneği o kadar zayıftı ki öğretim görevlisinin tahtaya ne yazdığını tam olarak göremiyordu.
Bu yetenekler bir dereceye kadar eksiklikleri ile dengelendi:
Fiziksel olarak sakar ve sanatsal olarak beceriksizdi.
Her zaman acelesi vardı ve değişiklikler veya düzeltmeler için geri dönmekten hoşlanmazdı.
Ayrıca Toulouse, çoğu matematikçinin önceden belirlenmiş ilkelerden çalıştığını, Poincaré'nin ise her seferinde temel ilkelerden yola çıktığını belirtmiştir (O'Connor ve diğerleri, 2002).
Düşünme yöntemi şu şekilde iyi özetlenmiştir:
“
Habitué à négliger les détails et à ne regarder que les cimes, il passait de l'une à l'autre avec une promptitude surprenante et les faits qu'il découvrait se groupant d'eux-mêmes autour de leur centre étaient instantanément et automatiquement classés dans sa mémoire. (Accustomed to neglecting details and to looking only at mountain tops, he went from one peak to another with surprising rapidity, and the facts he discovered, clustering around their center, were instantly and automatically pigeonholed in his memory.)
„
—Belliver (1956)
Sonlu ötesi sayılara karşı tutumu
Poincaré, Georg Cantor'un sonlu-ötesi sayılar teorisi karşısında dehşete düştü ve bundan matematiğin sonunda tedavi edileceği bir "hastalık" olarak bahsetti.[66] Poincare, "Gerçek bir sonsuz yoktur; Cantorcular bunu unuttular ve bu yüzden çelişkiye düştüler" dedi.[67]
Başarılar
Ödüller
İsveç Kralı II. Oscar'ın matematik yarışması (1887)
Poincaré, Boltzmann veya Gibbs gibi ünlü teorik fizikçilerinNobel Ödülü'nü almamış olmaları, Nobel komitesinin teoriden çok deneye önem verdiğini gösteren bir kanıt olarak görülüyor.[74][75] Poincaré'nin durumunda, onu aday gösterenlerden birkaçı, en büyük problemin belirli bir keşif, buluş ya da tekniğe isim vermek olduğuna dikkat çekti.[71]
Felsefe
Poincaré, matematiğin mantığın bir dalı olduğuna inanan Bertrand Russell ve Gottlob Frege'nin felsefi görüşlerine zıttı. Poincare şiddetle karşı çıktı ve sezginin matematiğin hayatı olduğunu iddia etti. Poincare, Bilim ve Hipotez (Science and Hypothesis) adlı kitabında ilginç bir bakış açısı sunar:
“
Yüzeysel bir gözlemci için bilimsel gerçek şüphenin ötesindedir; bilimin mantığı yanılmazdır ve bilim insanları bazen yanılıyorlarsa, bu sadece onların kuralını yanlış anlamalarındandır.
Ancak Poincaré, felsefe ve matematiğin tüm dallarında Kantçı görüşleri paylaşmadı. Örneğin, geometride Poincaré, Öklidyen olmayan uzayın yapısının analitik olarak bilinebileceğine inanıyordu. Poincare, uzlaşmanın fizikte önemli bir rol oynadığını savundu. Görüşü (ve daha sonra, daha aşırı versiyonları) "uzlaşımcılık" olarak bilinmeye başladı.[76] Poincare, Newton'un birinci yasasının ampirik olmadığına, mekanik için geleneksel bir çerçeve varsayımı olduğuna inanıyordu (Gargani, 2012).[77] Ayrıca fiziksel uzayın geometrisinin geleneksel olduğuna inanıyordu. Fiziksel alanların geometrisinin veya sıcaklık gradyanlarının değiştirilebildiği örnekleri, ya katı cetveller tarafından ölçülen bir alanı Öklidyen olmayan olarak tanımlayarak ya da cetvellerin değişken bir ısı dağılımı ile genişletildiği veya küçültüldüğü bir Öklid uzayı olarak tanımladı. Ancak Poincaré, Öklidyen olmayan bir fiziksel geometriye geçmek yerine Öklid geometrisini kurtarmak için fiziksel yasaları değiştirmeyi tercih edeceğimiz kadar Öklid geometrisine alıştığımızı düşündü.[78]
Özgür irade
Poincaré'nin Paris'teki Société de Psychologie'den önceki ünlü dersleri (Bilim ve Hipotez (Science and Hypothesis), Bilimin Değeri (The Value of Science) ve Bilim ve Yöntem (Science and Method) olarak yayınlandı) Jacques Hadamard tarafından yaratıcılık ve buluşun iki zihinsel aşamadan oluştuğu fikrinin kaynağı olarak gösterildi, ilki bir probleme olası çözümlerin rastgele kombinasyonları, ardından bir eleştirel değerlendirme.[79]
Uzun bir bilinçsiz çalışma döneminden sonra bir nevi ani aydınlanmayla zihne kendini sunan kombinasyonların genellikle faydalı ve verimli kombinasyonlar olduğu kesindir... ego, ama sadece ilginç olanlar bilinç alanına girerler. . . Yalnızca birkaçı uyumlu ve dolayısıyla aynı anda hem yararlı hem de güzeldir ve sözünü ettiğim geometrikçinin özel duyarlılığını etkilemeye muktedir olacaklardır; Bu, bir kez uyandığında dikkatimizi onlara yöneltecek ve böylece onlara bilinçlenme fırsatı verecektir. . . Bilinçaltı egoda ise tam tersine, disiplinin yokluğuna ve tesadüften doğan düzensizliğe bu isim verilebilirse, özgürlük diyeceğim şey hüküm sürer.[80]
„
Poincaré'nin iki aşaması-seçimin takip ettiği rastgele kombinasyonlar- Daniel Dennett'in iki aşamalı özgür irade modelinin temeli oldu.[81]
Poincaré, Henri (1902–1908), The Foundations of Science, New York: Science Press; reprinted in 1921; This book includes the English translations of Science and Hypothesis (1902), The Value of Science (1905), Science and Method (1908).
Ewald, William B., ed., 1996. From Kant to Hilbert: A Source Book in the Foundations of Mathematics, 2 vols. Oxford Univ. Press. Contains the following works by Poincaré:
Poincaré tarafından kanıtlanan teoremlerin bir listesi:
Poincaré yinelenme teoremi: belirli sistemler, yeterince uzun fakat sınırlı bir süre sonra, başlangıç durumuna çok yakın bir duruma geri dönecektir.
Poincare–Bendixson teoremi: Sürekli dinamik sistemlerin yörüngelerinin düzlem, silindir veya iki küre üzerindeki uzun vadeli davranışları hakkında bir ifade.
Poincaré–Hopf teoremi: Kaynakları veya yutakları (sink) olmayan bir küre üzerinde düzgün vektör alanı olmadığını belirten tüylü top teoreminin bir genellemesi.
Poincaré ayırma teoremi: Daha büyük bir gerçek simetrik matris A'nın B'nin sütunları tarafından yayılan doğrusal bir alt uzay üzerine dik izdüşümü olarak kabul edilebilecek gerçek bir simetrik matris B'AB'nin özdeğerlerinin üst ve alt sınırlarını verir.
Poincaré–Birkhoff teoremi: Her alan-korur, oryantasyon-korur iki sınırı zıt yönlerde döndüren bir halkanın homeomorfizminin en az iki sabit noktası vardır.
^McCormmach, Russell (Bahar 1967), "Henri Poincaré and the Quantum Theory", Isis, 58 (1), ss. 37-55, doi:10.1086/350182
^Irons, F. E. (Ağustos 2001), "Poincaré's 1911–12 proof of quantum discontinuity interpreted as applying to atoms", American Journal of Physics, 69 (8), ss. 879-884, Bibcode:2001AmJPh..69..879I, doi:10.1119/1.1356056
^Lorentz, Hendrik A. (1895), Versuch einer theorie der electrischen und optischen erscheinungen in bewegten Kõrpern, Leiden: E.J. Brill
^Poincaré, Henri (1898), "The Measure of Time", Revue de Métaphysique et de Morale, cilt 6, ss. 1-13
^abcPoincaré, Henri (1900), "La théorie de Lorentz et le principe de réaction", Archives Néerlandaises des Sciences Exactes et Naturelles, cilt 5, ss. 252-278. See also the İngilizce çevirisi 26 Haziran 2008 tarihinde Wayback Machine sitesinde arşivlendi.
^
Poincaré, H. (2007), "38.3, Poincaré to H. A. Lorentz, May 1905", Walter, S. A. (Ed.), La correspondance entre Henri Poincaré et les physiciens, chimistes, et ingénieurs, Basel: Birkhäuser, ss. 255-257
^Poincaré, H. (2007), "38.4, Poincaré to H. A. Lorentz, May 1905", Walter, S. A. (Ed.), La correspondance entre Henri Poincaré et les physiciens, chimistes, et ingénieurs, Basel: Birkhäuser, ss. 257-258
^abc 25 Haziran 2021 tarihinde Wayback Machine sitesinde arşivlendi. (PDF) Membres de l'Académie des sciences depuis sa création : Henri Poincare. Sur la dynamique de l' electron. Note de H. Poincaré. C.R. T.140 (1905) 1504–1508.
^Özgün metin: "Il importait d'examiner cette hypothèse de plus près et en particulier de rechercher quelles modifications elle nous obligerait à apporter aux lois de la gravitation. C'est ce que j'ai cherché à déterminer; j'ai été d'abord conduit à supposer que la propagation de la gravitation n'est pas instantanée, mais se fait avec la vitesse de la lumière."
^French: "Mémoire sur les courbes définies par une équation différentielle"
^Kolmogorov, A.N.; Yushkevich, A.P., (Ed.) (24 Mart 1998). Mathematics of the 19th century. 3. ss. 162-174, 283. ISBN978-3764358457.
^Congress for Cultural Freedom (1959). Encounter. 12. Martin Secker & Warburg. 10 Ağustos 2021 tarihinde kaynağından arşivlendi. Erişim tarihi: 25 Mart 2022.
^J. Hadamard. L'oeuvre de H. Poincaré. Acta Mathematica, 38 (1921), p. 208
Cuvaj, Camillo (1969), "Henri Poincaré's Mathematical Contributions to Relativity and the Poincaré Stresses", American Journal of Physics, 36 (12), ss. 1102-1113, Bibcode:1968AmJPh..36.1102C, doi:10.1119/1.1974373
Galison, P. (2003), Einstein's Clocks, Poincaré's Maps: Empires of Time, New York: W.W. Norton, ISBN978-0-393-32604-8
Giannetto, E. (1998), "The Rise of Special Relativity: Henri Poincaré's Works Before Einstein", Atti del XVIII Congresso di Storia della Fisica e dell'astronomia, ss. 171-207
Goldberg, S. (1970), "Poincaré's silence and Einstein's relativity", British Journal for the History of Science, cilt 5, ss. 73-84, doi:10.1017/S0007087400010633
Miller, A.I. (1973), "A study of Henri Poincaré's "Sur la Dynamique de l'Electron", Arch. Hist. Exact Sci., 10 (3–5), ss. 207-328, doi:10.1007/BF00412332
Miller, A.I. (1996), "Why did Poincaré not formulate special relativity in 1905?", Jean-Louis Greffe; Gerhard Heinzmann; Kuno Lorenz (Ed.), Henri Poincaré : science et philosophie, Berlin, ss. 69-100
Popp, B.D. (2020), Henri Poincaré: Electrons to Special Relativity, Cham: Springer Nature, ISBN978-3-030-48038-7
Walter, S. (2005), "Henri Poincaré and the theory of relativity", Renn, J. (Ed.), Albert Einstein, Chief Engineer of the Universe: 100 yazars for Einstein, Berlin: Wiley-VCH, ss. 162-165
Scott Walter (2007), Noretta Koertge (Ed.), "Poincaré, Jules Henri French mathematician and scientist", New Dictionary of Scientific Biography, New York: Charles Scribner’s Sons, 6, ss. 121-125, 11 Ağustos 2021 tarihinde kaynağından arşivlendi, erişim tarihi: 11 Ağustos 2021
Howard Stein, "the Strange Case of Poincaré"(PDF), Physics and Philosophy Meet, The University of Chicago, 11 Ağustos 2021 tarihinde kaynağından arşivlendi(PDF), erişim tarihi: 11 Ağustos 2021
Olivier Darrigol (2012), "Poincaré's Light"(PDF), Poincaré, 1912-2012, Séminaire Poincaré XVI, ss. 1-43, 24 Kasım 2020 tarihinde kaynağından arşivlendi(PDF), erişim tarihi: 11 Ağustos 2021
James Carlson, (Ed.) (8-9 Haziran 2010), "The Poincaré Conjecture"(PDF), Clay Mathematics Proceedings, Paris, France: Institut Henri Poincaré, 19, 11 Ağustos 2021 tarihinde kaynağından arşivlendi(PDF), erişim tarihi: 11 Ağustos 2021
Gerhard Heinzmann (1998-1999), "Poincaré on understanding mathematics"(PDF), Philosophia Scientiæ, 3 (2), ss. 43-60, 11 Ağustos 2021 tarihinde kaynağından arşivlendi(PDF), erişim tarihi: 11 Ağustos 2021
Connemara Doran, Lizhen Ji & Shing-Tung Yau (Ed.), "Poincaré's Path to Uniformization"(PDF), Uniformization, Riemann-Hilbert Correspondence, Calabi-Yau Manifolds and Picard-Fuchs Equations, ALM, 42, ss. 55-79, 4 Kasım 2019 tarihinde kaynağından arşivlendi(PDF), erişim tarihi: 11 Ağustos 2021, Proceedings of a workshop at the Institut Mittag-Leffler, The Royal Swedish Academy of Sciences, Advanced Lectures in Mathematics 42 (Boston: International Press, 2018)KB1 bakım: Editörler parametresini kullanan (link)
Ivana Balaževic, Carl Allen & Timothy Hospedales (2019), "Multi-relational Poincaré Graph Embeddings"(PDF), 33rd Conference on Neural Information Processing Systems (NeurIPS), Vancouver, Canada, 11 Ağustos 2021 tarihinde kaynağından arşivlendi(PDF), erişim tarihi: 11 Ağustos 2021
C. T. C. Wall, Poincaré complexes: I(PDF), 11 Ağustos 2021 tarihinde kaynağından arşivlendi(PDF), erişim tarihi: 11 Ağustos 2021
Stephen M. Buckley & Pekka Koskela (1998), "New Poincaré Inequalities From Old"(PDF), Annales Academiæ Scientiarum Fennicæ Mathematica, cilt 23, ss. 251-260, 11 Ağustos 2021 tarihinde kaynağından arşivlendi(PDF), erişim tarihi: 11 Ağustos 2021
Necip Çakır (Nisan-Temmuz-Ekim 1995), "Bilim Dünyasından Bir Portre: Henri Poincaré", İ.Ü. Siyasal Bilgiler Fakültesi Dergisi, 11-12-13, ss. 255-266, 11 Ağustos 2021 tarihinde kaynağından arşivlendi, erişim tarihi: 11 Ağustos 2021
Mehmet Pakdemirli, M. M. Fatih Karahan & Hakan Boyacı (26-30 Ağustos 2013), "Kuvvetli Nonlineer Sistemler için Çok Ölçekli Lindstedt Poincare Tekniği", XVIII. ULUSAL MEKANİK KONGRESİ, Manisa: Celal Bayar Üniversitesi
Özge Hıdırlar (2014), Poincare Grup ve Cebirleri(PDF), İstanbul: Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, 11 Ağustos 2021 tarihinde kaynağından arşivlendi(PDF), erişim tarihi: 11 Ağustos 2021, (Yüksek Lisans Tezi)